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only of U:\, but also of ion- electron and electron­
electron interactions, to be denoted by U:e and 
U~., respectively. For a metal, the jellium 
model (a lattice of positive point ions embedded 
in a uniform sea of electrons) will be used here. 
This is the model used for the electrostatic en­
ergy in the pseudopotential theory of metals. 12 
Denoting the uniform electron density by no 
= Z (3)/ n o, it follows that 
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where Ncell is the number of unit cells. Changing 
variables of integration leads to U:. = - 2U~. , 
and then using the r-function definition, it fol­
lows that l3 
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Thus, the electrostatic energy density U~s for 
both metallic and ionic structures may be written 
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remembering that (1J) = 0 for ionic structures. The 
parameter a is a convergence parameter and is 
usually chosen so that the real-lattice and recip­
rocal-lattice sums converge at about the same rate. 
However, results are independent of the choice for 
a. 

There are two choices for the parameter A which 
are of particular interest here. For A= (n~)1/3, 
all the strained-volume dependence of U~. is con­
tained in the (1 / n~)1/3 factor outside of the square 
bracket in Eq. (11), and the square bracket con­
tains only volume- conserving shear dependence. 
This choice is convenient for taking Fuchs-type 
strain derivatives of U;s. The second choice, and 
the one to be used throughout this paper, is 
A = (no)I/3. This choice is convenient for differen­
tiating U~s with respect to the Lagrangian strain pa­
rameters, 
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where repeated indices are to be summed and oiJ 
is the Kronecker 0. The transformation coeffi­
cients are given by 
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where x and x' are the position vectors of a mate­
rial particle in the initial and deformed states, re­
spectively. Derivatives of U~s with respect to 
T}lj give directly the electrostatic contributions to 
the Brugger-type elastic constants, which will be 
discussed in Sec. m. 

By performing the appropriate lattice and 
reciprocal-lattice sums in Eq. (11), the electro­
static energy for any given metallic or ionic struc­
ture can be obtained. For metallic structures, 
the electrostatic energy per ion is usually written 
in the form 

Ees(Per ion)= no U.s = a.(z:e
2 

)=ao(~::2) , (14) 

where a is the lattice constant and ro is the radius 
of the ionic sphere, given by -t 1Trg = no. Similarly 
for ionic structures, the electrostatic energy per 
molecule is written 
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where R is the nearest-neighbor distance. The a 
coefficients entering in Eqs. (14) and (15) are 
known as geometriC coefficients when referring to 
metals, and as Madelung constants when referring 
to ionic structures. We have evaluated these co­
efficients for six metallic and five ionic structures 
and have listed the results in Table 1. For those 
structures involving a c/ a ratio, the evaluations 
were performed for the case of ideal close packing 
of spheres, i. e., c/ a = 1 for the simple hexagonal 
structure, and c/ a = Jf for the hcp and WC- type 
structures. For the wurtzite structure, c/a= If 
and u = i, which gives equal bond lengths and bond 
angles. 

III. GENERAL EXPRESSIONS FOR BRUGGER ELASTIC 
CONSTANTS 

Having determined the electrostatic energy den­
sity of a deformed lattice, one can now calculate 
the electrostatic contributions to the elastic con­
stants by the method of homogeneous deformation. 
Since internal- strain effects may be treated sep­
arately (see Appendix A), here we will only con­
sider the case of zero internal strain, i. e. , ~ = O. 
Internal- strain contributions to the elastic con­
stants will be treated in Sec. IV. The Lagrangian 
strain derivatives of U;s can be easily performed 
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(see Appendix B), thus yielding the electrostatic 
Brugger elastic constants 
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Introducing the dimensionless parameters r = H( ~~)/ 
0 0

1/3 and g=05/3G(h)/ 27T, the expressions for the 
first-, second-, and third-order elastic constants 
are 
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where 

XIJ=OIJ' (20) 

Xlikl=OIJOkl+OlkOn+OIlOJk, (21) 

Y iJkl = glg/Okl + gkg,Oj} + gigk 0JI 

+OlmXkIJ.+OI.XkIJm, (23) 
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It is easily seen that the coefficients X iJ ... , 

Y'Jkl".' and Z IJklmn' and thus the elastic constants 
C~:. .. , satisfy Cauchy relations, 1. e., the order­
ing of the subscripts is immaterial. Therefore, 
in general, all tl e elastic constants (through third 
order) can be obtained from only two types of first­
order constants C;; and C~~; four types of second­
order constants C;; H, C;; JJ> C~~JK' and C~; J K ; 

and seven types of third-order constants C~;J1II' 

C~;I1JJ' C~;JJKK' C~~TJJJK' C~·JJKKK' C;:IIJK, 
and C~: JJ JK, where the subscripts run from 1 to 3 
with UJ#-K. For these types, the elastic con­
stants with Cauchy relations have been listed in 
Table II. In that table, as well as the remainder 
of this paper, Voigt (reduced) notation is used for 
the subscripts whenever referring to specific 

TABLE I. Geometric coefficients for six metallic 
structures and Madelung constants for five ionic struc­
tures. For metals, the electrostatic energy per ion is 
o a(Z2e2/a ) = 00(Z2e2/2ro), where a is the lattice constant 
and ro is the radius of the ionic sphere. For the ionic 
structures, the electrostatic energy per molecule is 
oa (Z2e2/a) = Q. R.(Z2e2/R ) , where R is the nearest-neighbor 
distance. 

Metallic O il 00 

simple cubic -1. 418 648 7397 -1. 760 ll8 8842 
fcc - 2.2924310371 -1. 7917472304 
bcc -1. 819 616 7248 -1. 791858 5114 
diamond - 2. 693 399 0221 - 1. 6708514055 
simple hexagon~ l -1. 4978559763 -1. 771389 4740 
hcp -1. 620 929 3075 -1. 791676 2409 

Ionic °a o R. 

NaCI type -3.4951291893 -1. 7475645946 
CsCI type - 2.035361 5095 -1. 762 6747731 
z inc blende - 3. 782 9261041 -1. 638 055 0534 
WC type -1. 235 585 6381 -1. 235 585 6381 
wurtzite - 2.6802669939 -1. 641321 6274 


